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Abstract 

Backgound and aims. In this study we analyzed heart rate variability (HRV) via chaotic 

global techniques so as to discriminate diabetics from control subjects. Matherial and 

method. Chaotic global analysis of the RR-intervals from the electrocardiogram and pre-

processing adjustments were undertaken. The effect of varying two parameters to adjust 

the Multi-Taper Method (MTM) power spectrum were evaluated. Then, cubic spline 

interpolations from 1Hz to 13Hz were applied whilst the spectral parameters were fixed. 

Precisely 1000 RR-intervals of data were recorded. Results. CFP1 and CFP3 are the only 

significant combinations of chaotic globals when the default standard conditions are 

enforced. MTM spectral adjustments and cubic spline interpolation are trivial at effecting 

the outcome between the two datasets. The most influencial constraint on the outcome is 

data length. Conclusion. Chaotic global analysis was offered as a reliable, low-cost and 

robust technique to detect autonomic dysfunction in subjects with diabetes mellitus.  

key words: Diabetes Mellitus; Multi-Taper Method; Cubic Spline Interpolation; DPSS; 

Thomson’s nonlinear combination 

Background and Aims 

Heart rhythm is one of the key signs for 

distinguishing a pathological state. Since heart 

rate presents short term variability, mathematical 

algorithms to analyze these oscillations are 

necessary to develop novel methods to recognize 

cardiovascular diseases early and achieve 

differential diagnosis [1].  

The rhythm of electrocardiographic (ECG) 

RR-intervals resulting from the PQRST-

signature can waver in a chaotic manner [2,3]. 

Currently, we aim to evaluate the cardiac branch 

of the autonomic nervous system (ANS) of the 

subjects with diabetes mellitus by analyzing their 

heart rate variability (HRV) [4]. Such 

computations are beneficial to assess surgical 

patients [5] particularly when sedated [6] or 

 

 

© 2019 ILEX PUBLISHING HOUSE, Bucharest, Roumania 

 

http://rjdnmd.org 

Rom J Diabetes Nutr Metab Dis. 26(3):279-291 

doi: 10.2478/rjdnmd-2019-0029 
 

https://www.google.co.uk/search?client=firefox-b&q=anaesthetized&spell=1&sa=X&ved=0ahUKEwjUs8qX5ZPVAhXJAcAKHW3PAoUQBQgjKAA&biw=1600&bih=734


 

 

280 Romanian Journal of Diabetes Nutrition & Metabolic Diseases / Vol. 26 / no. 3 / 2019 

unable to indicate discomfort as with sleep apnea 

patients [7] or those experiencing “air hunger” 

[8,9]. Thus, the method advises the clinical team 

to identify delicate changes in the ANS, in 

addition to predicting the risk of difficulties.  

The unit necessary for HRV analysis are the 

RR-intervals and, physiological mechanisms 

related to heart rate control are nonlinear [1]. 

Through RR-intervals we compute the 

innovative chaotic global parameters to 

determine the control from the experimental 

time-series. We expected the subjects with 

diabetes mellitus’ RR-intervals chaotic responses 

performed in a nonlinear manner equivalent to 

cardiac arrest [10,11], during epileptic seizures 

[12,13], chronic obstructive pulmonary disease 

(COPD) [14] and attention deficit hyperactivity 

disorder (ADHD) [15] when computed using 

these algorithms. 

A lessening in the levels of chaos would be 

consistent with abnormalities in the ANS and a 

dysfunctional vagus. This nerve has a significant 

role in regulation of the rhythm in physiological 

systems [16]. The sympathetic and 

parasympathetic nervous systems’ connections 

have been shown to influence HRV. HRV is a 

non-invasive and inexpensive tool to monitor the 

cardiac branches of the ANS. Further techniques 

are insensitive for example the Sympathetic Skin 

Response [17] or, too costly such as Quantitative 

Pupillography [18]. 

These chaotic global techniques are highly 

sensitive to such variabilities. This is particularly 

the case compared with those based on linear 

descriptive statistics, conventional nonlinear or 

geometric routines. The greater the levels of 

chaos, usually the more healthy the 

physiological status. Less chaos can be 

interpreted as a statistical marker for 

pathological states and “dynamical diseases” in 

particular [19]. 

Historically, we have calculated HRV in 

diabetes with validated procedures [4,20-23], 

yet, the reliability of global chaotic analysis to 

detect autonomic impairment in diabetic patients 

is unclear. Reduced chaos is related to decreased 

HRV and impaired physiological status [19,24]. 

Our initial hypothesis proposed that diabetic 

patients presented reduced chaotic behavior of 

HRV. In this circumstance, we evaluated HRV 

through chaotic global techniques with the 

intention of discriminating diabetics from 

control subjects and confirm its reliability to 

identify ANS dysfunction. 

Material and Methods 

Patient Selection and assessments were 

exactly as the studies by Souza et al [22] and 

Garner et al [4].  

Multi-Taper Method (MTM) 

Power Spectrum 

MTM is a power spectrum that can be 

advantageous when applied in spectral 

estimation [4]. Its key advantage is minimization 

of spectral leakage. Functions named discrete 

prolate spheroidal sequences (DPSS); often 

termed Slepian Sequences [25] are a set of 

functions which maximize the windows. See 

Figure 1. 

Chaotic Globals 

High spectral Entropy (hsEntropy) [4] is a 

computation based on the unevenness of the 

amplitude and frequency of the MTM power 

spectrums peaks. Shannon entropy [26] is the 

function applied to the power spectrum. We 

compute the median Shannon entropy of three 

values attained from three various MTM power 

spectra. Thus, the MTM power spectra at three 

test settings: (a) a sine wave, (b) uniformly 

distributed random variables, and (c) the 

oscillating signal from the subject with diabetes 

mellitus. These values are normalized. The sine 
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wave achieves a zero value, the uniformly 

random variable attains unity, and the diabetic 

subjects’ experimental signal between. 

hsEntropy is this corresponding ‘in between’ 

value. 

 

Figure 1. An MTM power spectrum for an arrangement of 1000 RR-intervals from a subject diagnosed with diabetes 

mellitus. sMTM is the area underneath the power spectrum; yet above the baseline. MTM parameters used in the 

computation of sMTM, high spectral Entropy and high spectral DFA are as follows (a) 1 Hz for sampling frequency; (b) 

DPSS or Slepian Sequences are set to 3; (c) 256 for Fast Fourier Tranform length; and, lastly (d) Thomson's nonlinear 

combination method is set to ‘adaptive’. 

DFA was derived by Peng et al in 1995 [27]. 

It can be imposed on time-series where the 

mean, variance and autocorrelation adjust with 

time. High spectral Detrended Fluctuation 

Analysis (hsDFA) is where DFA is applied to 

the frequency rather than time. The horizontal 

axis is frequency and, vertical axis is amplitude. 

To acquire hsDFA we estimate the spectral 

adaptation in precisely the same way as with 

hsEntropy. DFA is the algorithm enforced onto 

the power spectrum instead. 

Spectral Multi-Taper Method (sMTM) [28] 

is derived from elevated broadband noise 

intensities generated in MTM power spectra by 

irregular and often chaotic signals. sMTM is the 

area beneath the power spectrum but above the 

baseline.  

Chaotic Forward Parameters 

(CFP 1 to CFP7) 

CFP1 to CFP7 [4] are applied to RR-

intervals from normal subjects and those with 

diabetes mellitus. hsDFA responds to chaos 

contrariwise to the others, so we subtract its 

value from unity. Weightings of unity are 

assumed for all three chaotic globals. Later we 

evaluate the statistically significant CFP1 and 

CFP3 alone. We applied the CFP1 with all three 

chaotic globals included and then the CFP3 with 

hsDFA absent. As before in Souza et al [22] and 

Garner et al [4], CFP1 is expected to be the most 

statistically robust and the CFP3 the most 

statistically significant.  

There are seven non-trivial combinations of 

three chaotic globals [15]. It is anticipated that 

the CFP which applies all three should be the 

most robust. This is since it takes the 

information and processes it in three different 

ways. The summation of the three would be 

expected to deviate greater than single or double 

permutations. The potential analytical hazard 

here is we are only computing spectral 

components; the phase information is lost. 



 

 

282 Romanian Journal of Diabetes Nutrition & Metabolic Diseases / Vol. 26 / no. 3 / 2019 

Principal Component Analysis 

Principal Component Analysis (PCA) 

[29,30] estimates the complexity of high-

dimensional data sets. It is sympathetic when 

sources of unpredictability in the data need 

clarification or, to lessen the complexity of the 

data and, via this evaluate the data with fewer 

dimensions. Its key aim is to signify the data 

with least variables at the same time as satisfying 

the majority of total variance.  

There are two main properties of the PCA:  

− It is non-parametric − no prior 

knowledge can be incorporated.  

− Data reduction incurs loss of 

information. 

Some assumptions of the technique are 

imperative: 

1. Linearity − Accepting the data set to be 

linear combinations of the variables.   

2. The necessity of mean and covariance.  

3. No assurance that the direction of 

maximum variance will contain 

discriminative features. 

4. Large variance includes the most 

important dynamics, whilst the lowest 

corresponds to noise. 

The following need consideration when 

understanding PCA:  

1. The higher the component loadings the 

more critical that the variable is to the 

component. 

2. Positive and negative loadings are 

understood as mixed. 

3. Whether positive or negative for mixed 

loadings; it is irrelevant.  

4. The rotated component matrix is vital.  

Effect Sizes 

Cohen’s d [31,32] is a general term that 

signifies the effect sizes. To estimate the size of 

deviations amongst protocols for significant 

differences, the effect size was assessed via a 

sub-group termed Cohen’s ds [33]. Cohen’s ds 

characterize the standardized mean difference of 

an effect. It can be conferred to compute effects 

across studies even when the dependent 

variables are quantified in unalike ways or when 

completely dissimilar measures are affected. It 

varies from zero to infinity and can be positive 

or negative. Cohen denotes the standardized 

mean difference between two groups of 

independent observations for a suitable sample 

as ds. 

So for Cohen’s ds (equation below), the 

numerator is the variation between the means of 

two groups of observations. The denominator is 

the pooled standard deviation. These are then 

squared to avert the positive and negative values 

cancelling each other out. They are summed, and 

divided by the number of observations minus 

one (Bessel’s correction) for bias in the estimate 

of the population variance. To conclude, a 

square root is performed. 
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Regarding, Cohen’s ds the subsequent values 

describe their relevance as per Sawilowsky [34]; 

0.01 > very small effect; 0.20 > small effect; 

0.50 > medium effect; 0.80 > large effect;1.20 > 

very large effect, and finally 2.00 > a huge effect 

size. 

Thomson’s nonlinear combination 

methods & DPSS 

Now we assess the effect of manipulating 

Thomson’s nonlinear combination settings on 

the MTM spectra. There are three possible 

circumstances. The conditions that can be 

imposed on the MTM power spectrums window 

are 'adapt', 'eigen', or 'unity' and are the weights 

on individual tapered power spectral density 

(PSD) estimates. The default is Thomson’s 
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adaptive frequency-dependent weights, hence 

'adapt'. The 'eigen' method weights each tapered 

PSD estimate by the eigenvalue (frequency 

concentration) of the corresponding Slepian 

taper. The 'unity' method weights each tapered 

PSD estimate equally [21].  

Moreover, we concurrently assess the effect 

of changing the settings of the DPSS from 2 to 

13. DPSS affects the adaptation properties of the 

tapers with the intention of reducing spectral 

leakage. Whilst assessing the outcomes of the 

Thomson’s nonlinear combinations settings and 

the levels of DPSS on the chaotic response the 

sampling frequency is fixed at 1Hz for the MTM 

and Fast Fourier Transform of length 256 is 

enforced. We assess the effects of DPSS (2 to 

13) and Thomson’s nonlinear combinations 

(‘adaptive’,’eigen’ and ‘unity’) at multiple 

lengths of time-series of RR-intervals 

simultaneously. We start the assessment at 500 

RR-intervals and at intervals of 50 increase the 

time-series to a maximum of 1000 RR-intervals. 

We only assess CFP1 and CFP3. These are the 

only groupings significant under default 

conditions.  

Cubic-spline Interpolation 

Following this, we evaluated the importance 

of pre-processing techniques on the results 

obtained through chaotic global algorithms. 

Once more comparing only the chaotic global 

values for CFP1 and CFP3 as these are the only 

values significant under default conditions.  

Time series constructed from the RR-

interval tachograms are not equidistantly 

sampled. This has to be made suitable prior to 

frequency-domain analysis. Firstly, we can 

decide to assume equidistant sampling [35] and 

compute the power spectrum directly from the 

tachogram of RR-intervals. This is the method 

widely adopted up-til-now by previous studies 

on chaotic globals with obese children [36], 

ADHD [15] and diabetes mellitus [22]. The RR-

intervals are therefore a function of the beat 

number. Yet, this could cause a distortion in the 

spectrum [37] and so the spectrum must then be 

considered a function of cycles per beat rather 

than of frequency [38]. 

An alternative approach is to implement a 

cubic spline interpolation [39] to convert the 

nonequidistantly sampled RR-tachogram into an 

equidistantly sampled time series [40]. 

Consequently we arranged a cubic spline 

interpolation on the RR-interval tachogram. We 

accomplish this at the levels 1Hz to 13Hz. This 

covers the most relevant scenarios in HRV 

analysis. Kubios HRV
®

 [23] software offers a 

default option of 4Hz. It is important to realize 

that the interpolation frequency will increase the 

number of data points in the time-series. A 

frequency of 4Hz for example will elevate the 

number of RR-intervals from 1000 to 4000, etc. 

Following the interpolation, the chaotic 

global algorithms are fixed. During the 

assessment of the cubic spline interpolations we 

set the Thomson’s setting to ‘adaptive’, 1Hz for 

sampling frequency, length of 256 for Fast 

Fourier Transform and the DPSS set to 3. 

Results 

When observing Table 1 it should be 

emphasised that CFP1, CFP2, CFP3, CFP6 and 

CFP7 present increased values in the normal 

physiological healthy state and reduced values in 

the diabetic group. Of the seven permutations 

only CFP1 and CFP3 are statistically significant 

with CFP1 (<0.03; Kruskal-Wallis, medium 

effect size) and CFP3 (<0.01; ANOVA1 & 

Kruskal-Wallis, large effect size). The standard 

deviations are comparable throughout.  

With regards to the multivariate analysis by 

PCA (See Figure 2). For the MTM power 

spectra CFP1 has the First Principal Component 

(PC1) (0.257) and the Second Principal 
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Component (PC2) (-0.518). Nevertheless, CFP3 

has the PC1 (0.049) and the PC2 (-0.609). Only 

the first two components need be considered 

owing to the steep scree plot. The cumulative 

influence as a percentage is 61.9 percent for the 

PC1 and 99.8 percent for the cumulative total of 

the PC1 and PC2. PC2 has an influence of 37.9 

percent. CFP1 which applies all three chaotic 

global techniques is the optimal and most robust 

overall grouping with regards influencing the 

correct outcome.  

Table 1. Mean values and their standard deviations for the chaotic forward parameters (CFP1 to CFP7: non-dimensional 

values) for the normal and diabetic mellitus subjects with 1000 RR intervals. Both the one-way analysis of variance 

(ANOVA1:parametric) and the Kruskal-Wallis (non-parametric) tests of significance were calculated. This was since the 

normal distributions were borderline in the majority of cases, determined via statistical tests of Anderson-Darling [41] and 

Lilliefors [42]. Effect Sizes by Cohen’s ds were calculated for CFP1 and CFP3 as they were significant by ANOVA1 

and/or Kruskal-Wallis tests under default conditions. 

Chaotic Global 

CFPx 

Mean ± S.D. 

Normal (n=23) 

Mean ± S.D. 

Diabetic (n=23) 

ANOVA1 

(p-value) 

Kruskal-Wallis 

(p-value) 

Cohen’s ds Effect 

Sizes 

CFP1 0.9217± 0.1194 0.8603 ± 0.1202 0.0893 0.0273 0.51 

CFP2 0.6340 ± 0.1362 0.5889 ± 0.0995 0.2066 0.1471 - 

CFP3 0.8467 ± 0.1072 0.7463 ± 0.1043 0.0024 0.0002 0.94 

CFP4 0.7283 ± 0.2248 0.7394 ± 0.1985 0.8597 0.8347 - 

CFP5 0.3268 ± 0.1725 0.4071 ± 0.1480 0.0973 0.1040 - 

CFP6 0.6440 ± 0.1735 0.6133 ± 0.1504 0.5243 0.6445 - 

CFP7 0.4765 ± 0.2448 0.3641 ± 0.1967 0.0931 0.1040 - 

 

Figure 2. The plot illustrates the component loadings CFP1 to CFP7 for the 1000 RR-intervals of 23 subjects 

with diabetes mellitus. The CFP values are deduced by using the MTM spectra throughout. The properties of the MTM 

spectra are as follows: Sampling frequency 1Hz, DPSS of 3, 256 for Fast Fourier Transform length 

and Thomson’s nonlinear combination set at ‘adaptive’. Clearly, CFP1 and CFP3 

are the most influencial components when assessed by PCA above. 
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Thomson’s nonlinear combination 

methods & DPSS 

Here we present results for CFP1 and CFP3. 

We chose CFP1 and CFP3 since they are the two 

combinations presenting significant values under 

default conditions with MTM power spectra 

(CFP1 to CFP7) [22]. For CFP1 and CFP3 

concerning the Thomson’s nonlinear 

combination methods the difference the three 

conditions have is minimal. This is also the same 

regarding the manipulation of the DPSS. Most of 

the differences are induced by signal length. See 

sections next on CFP1 and CFP3. 

Chaotic Forward Parameter One  

CFP1 (Figure 3): Regarding the DPSS for 

the ‘adapt’, ‘eigen’ and ‘unity’ settings the 

decreases were mostly identical throughout. 

DPSS only effects the p-values on the shortest 

lengths of data (<600 RR-intervals); the 

interquatile ranges are small at maximal data 

length (1000 RR-intervals). Next, the Kruskal-

Wallis test of significance is more sensitive on 

the p-values than the ANOVA1 throughout. The 

p-values on similar datasets are smaller and 

therefore more significant. Finally, length of the 

RR-intervals is the most critical factor to attain a 

statistical marker for dynamical diseases at the 

level p<0.05 (or <5%) for both the Kruskal-

Wallis test and ANOVA1, but only for 900 to 

1000 RR-intervals. 

Chaotic Forward Parameter Three 

CFP3 (Figure 4): The p-values are more 

significant for CFP3 compared to CFP1. With 

CFP3 p<0.2 (ANOVA) and p<0.04 (Kruskal-

Wallis) throughout the analysis. DPSS has 

greater influence on p-values at lower data 

lengths than does CFP1. This is revealed by the 

higher interquartile ranges at low data lengths of 

the RR-intervals. Note, a length of 600 RR-

intervals is significant for CFP3 whereas 900 

RR-intervals is required for CFP1. There is more 

statistical variability with CFP3 than with CFP1. 

Interquartile ranges are higher, boxplot whiskers 

are wider and the p-values smaller. 

Cubic Spline Interpolation  

The effect of cubic spline interpolation 

between 1Hz and 13Hz increasing the length of 

the time-series via interpolation (rather than by 

recording longer time-series in the laboratory) is 

minimal. This is for both CFP1 and CFP3; 

parametric and non-parametric tests of 

significance as illustrated in Table 2. 

Discussions 

It is not totally clear why different 

algorithms behave in different manner for heart 

rate autonomic control. Thus, our study aimed to 

assess a new approach to detect autonomic 

dysfunction in diabetic patients based on the 

complexity of RR-intervals oscillation. As a 

main outcome, chaotic global techniques applied 

for HRV analysis were able to identify cardiac 

autonomic dysfunction in a sample of diabetic 

patients.  

HRV has received consideration due to the 

simple workability of the technique. The data 

can be collected by a simple one-channel ECG 

or by a pulse watch. RR-intervals can be 

processed by user-friendly software [40]. 

Furthermore, in 1996 the Task Force published 

directives in order to standardize HRV analysis 

based on linear methods in the time and 

frequency domains [40]. In this context, the 

research literature has established decreased 

HRV in diabetes [43,44]. 

Equally, and more recently, nonlinear 

analysis of HRV was suggested to provide 

information related to the scaling, quality and 

correlation properties of the time series, while 

traditional linear methods were designed to 

assess the magnitude of HRV. Complexity of 
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HRV is suggested to detect autonomic changes that linear methods are unable to identify [24]. 

 

Figure 3. The boxplots of CFP1 for the two tests of significance, one-way analysis of variance (ANOVA1: left column) 

and the Kruskal-Wallis test (right column) by p-value for the normal against diabetes mellitus subjects. These are per 

DPSS values from 2 to 13 in increments of one and for length of time-series from 500 to 1000 RR-intervals in intervals of 

50. The three Thomson’s nonlinear combinations are applied: ‘adaptive’ (top row), ‘eigen’ (middle row) and ‘unity’ 

(bottom row). The value closest to zero is the minimum with the value furthest away the maximum. The boundary of the 

box nearby the zero specifies the 25
th

 percentile. The line within the box is the median; not the mean. The boundary of the 

box furthest from the zero is the 75
th

 percentile. The difference flanked by these boundary points is the inter-quartile 

range (IQR). Whiskers (or error bars) above and beneath the boxes designate the 90
th

 and 10
th

 percentiles respectively. 
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Figure 4. The boxplots of CFP3 for the two tests of significance, one-way analysis of variance (ANOVA1: left side) and 

the Kruskal-Wallis test (right side) by p-value for the normal versus diabetes mellitus subjects. These are per DPSS values 

from 2 to 13 in increments of one and for length of time-series from 500 to 1000 RR-intervals in intervals of 50. The 

Thomson’s nonlinear combinations are applied: ‘adaptive’ (upper level), ‘eigen’ (middle level) and ‘unity’ (lower level).  
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Table 2. CFP1 and CFP3 (non-dimensional values) for the two tests of significance; the ANOVA1 (parametric) and the 

Kruskal-Wallis (non-parametric) test by p-value for the normal against diabetic subjects. DPSS is set to 3 and length of 

time-series is set at 1000 RR-intervals for an interpolation rate of 1Hz increasing to 2000 for 2Hz and so on. To calculate 

the MTM, the additional settings are as follows, sampling frequency of 1Hz, 256 for Fast Fourier Transform length and 

Thomson's ‘adaptive’ nonlinear combination method. 

Interpolation 

Rate (Hz) 

CFP1 

(p-value) 

CFP3 

(p-value) 

ANOVA1 KW ANOVA1 KW 

1 0.0888 0.0273 0.0024 0.0002 

2 0.0914 0.0273 0.0024 0.0002 

3 0.0924 0.0273 0.0024 0.0002 

4 0.0928 0.0273 0.0024 0.0002 

5 0.0932 0.0273 0.0024 0.0002 

6 0.0937 0.0273 0.0024 0.0002 

7 0.0934 0.0288 0.0024 0.0002 

8 0.0940 0.0273 0.0024 0.0002 

9 0.0939 0.0288 0.0024 0.0002 

10 0.0941 0.0305 0.0024 0.0002 

11 0.0941 0.0288 0.0024 0.0002 

12 0.0945 0.0273 0.0024 0.0002 

13 0.0948 0.0305 0.0024 0.0002 

 

Reduced complexity of HRV is associated 

with impaired autonomic function [45,46]. It 

allowed us to hypothesize decreased values of 

globally chaotic parameters in diabetic patients, 

which was later confirmed by lower values of 

CFP1 and CFP3 in the diabetic group compared 

to the control group. 

Regarding the mathematical particulars of 

the globally chaotic methods, in this study we 

intended to maximize the significance of the 

discrimination between the two cohorts by 

adjusting the parameters of MTM power 

spectrum applied in the calculation of chaotic 

globals. CFP1 and CFP3 were the only 

significant combinations of chaotic globals when 

assessed by the MTM power spectrum and the 

combinations of hsEntropy, hsDFA and sMTM 

under default conditions. Therefore, when we 

adjusted the MTM parameters we examined the 

effects of adjustment on these two combinations 

alone. The three Thomson’s nonlinear 

combination methods (‘adapt’, ‘eigen’ and 

‘unity’) have similar effect throughout and 

indicate no difference in the significances when 

applied sequentially. DPSS was varied between 

2 to 13. Yet, these adjustments had little 

significance on the outcome of the statistical 

tests (ANOVA1 or Kruskal-Wallis), except for 

minimal influence when the data lengths were 

extremely short (RR-intervals < 600). The 

majority of the differences were produced by 

signal length. 

Furthermore, once we had adjusted the 

MTM power spectrum parameters we assessed 

the impact of a cubic spline interpolation on the 

time series. Interpolation of the RR-intervals 

time-series prior to enforcement of the MTM 

power spectra was irrelevant. It had little effect 

on the statistical significance between the two 

groups. 

Globally chaotic methods applied to RR-

intervals were previously evaluated in ADHD 

[15], COPD [14], Obesity [36,47], Malnutrition 

[48] and flexible pole manuevers for 

physiotherapy shoulder rehabilitation [49]. This 

study highlights significant findings for clinical 

practice and procedures. ICUs and physicians 

are interested in predicting the risk for 

physiological complications. Comprehension of 

biological signals through nonlinear HRV is a 

significant issue for an appropriate program of 

care. We revealed that globally chaotic methods 
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applied to RR-intervals is sensitive to distinguish 

autonomic impairment in diabetes. Yet, they are 

robust to MTM spectral parameters and cubic 

spline interpolations. 

Conclusions 

Chaotic global techniques applied to RR-

intervals robustly detected HRV changes in 

diabetic patients revealing decreased nonlinear 

mechanisms in this population. Spectral 

adjustments or interpolation of time-series 

induced only slight effects. Therefore, this 

technique was able to identify autonomic 

dysfunction in diabetes mellitus. 
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