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Backgound and aims. In this study we analyzed heart rate variability (HRV) via chaotic
global techniques so as to discriminate diabetics from control subjects. Matherial and
method. Chaotic global analysis of the RR-intervals from the electrocardiogram and pre-
processing adjustments were undertaken. The effect of varying two parameters to adjust
the Multi-Taper Method (MTM) power spectrum were evaluated. Then, cubic spline
interpolations from 1Hz to 13Hz were applied whilst the spectral parameters were fixed.
Precisely 1000 RR-intervals of data were recorded. Results. CFP1 and CFP3 are the only
significant combinations of chaotic globals when the default standard conditions are
enforced. MTM spectral adjustments and cubic spline interpolation are trivial at effecting
the outcome between the two datasets. The most influencial constraint on the outcome is
data length. Conclusion. Chaotic global analysis was offered as a reliable, low-cost and
robust technique to detect autonomic dysfunction in subjects with diabetes mellitus.

key words: Diabetes Mellitus; Multi-Taper Method; Cubic Spline Interpolation; DPSS;
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The rhythm of electrocardiographic (ECG)

Background and Aims

Heart rhythm is one of the key signs for
distinguishing a pathological state. Since heart
rate presents short term variability, mathematical
algorithms to analyze these oscillations are
necessary to develop novel methods to recognize
cardiovascular diseases early and achieve
differential diagnosis [1].

RR-intervals resulting from the PQRST-
signature can waver in a chaotic manner [2,3].
Currently, we aim to evaluate the cardiac branch
of the autonomic nervous system (ANS) of the
subjects with diabetes mellitus by analyzing their
heart rate variability (HRV) [4]. Such
computations are beneficial to assess surgical
patients [5] particularly when sedated [6] or
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unable to indicate discomfort as with sleep apnea
patients [7] or those experiencing “air hunger”
[8,9]. Thus, the method advises the clinical team
to identify delicate changes in the ANS, in
addition to predicting the risk of difficulties.

The unit necessary for HRV analysis are the
RR-intervals and, physiological mechanisms
related to heart rate control are nonlinear [1].
Through RR-intervals we compute the
innovative chaotic global parameters to
determine the control from the experimental
time-series. We expected the subjects with
diabetes mellitus’ RR-intervals chaotic responses
performed in a nonlinear manner equivalent to
cardiac arrest [10,11], during epileptic seizures
[12,13], chronic obstructive pulmonary disease
(COPD) [14] and attention deficit hyperactivity
disorder (ADHD) [15] when computed using
these algorithms.

A lessening in the levels of chaos would be
consistent with abnormalities in the ANS and a
dysfunctional vagus. This nerve has a significant
role in regulation of the rhythm in physiological
systems  [16]. The  sympathetic  and
parasympathetic nervous systems’ connections
have been shown to influence HRV. HRV is a
non-invasive and inexpensive tool to monitor the
cardiac branches of the ANS. Further techniques
are insensitive for example the Sympathetic Skin
Response [17] or, too costly such as Quantitative
Pupillography [18].

These chaotic global techniques are highly
sensitive to such variabilities. This is particularly
the case compared with those based on linear
descriptive statistics, conventional nonlinear or
geometric routines. The greater the levels of

chaos, usually the more healthy the
physiological status. Less chaos can be
interpreted as a statistical marker for

pathological states and “dynamical diseases” in
particular [19].
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Historically, we have calculated HRV in
diabetes with validated procedures [4,20-23],
yet, the reliability of global chaotic analysis to
detect autonomic impairment in diabetic patients
is unclear. Reduced chaos is related to decreased
HRV and impaired physiological status [19,24].
Our initial hypothesis proposed that diabetic
patients presented reduced chaotic behavior of
HRV. In this circumstance, we evaluated HRV
through chaotic global techniques with the
intention of discriminating diabetics from
control subjects and confirm its reliability to
identify ANS dysfunction.

Material and Methods

Patient Selection and assessments were
exactly as the studies by Souza et al [22] and
Garner et al [4].

Multi-Taper Method (MTM)

Power Spectrum

MTM is a power spectrum that can be
advantageous when applied in  spectral
estimation [4]. Its key advantage is minimization
of spectral leakage. Functions named discrete
prolate spheroidal sequences (DPSS); often
termed Slepian Sequences [25] are a set of
functions which maximize the windows. See

Figure 1.

Chaotic Globals

High spectral Entropy (hsEntropy) [4] is a
computation based on the unevenness of the
amplitude and frequency of the MTM power
spectrums peaks. Shannon entropy [26] is the
function applied to the power spectrum. We
compute the median Shannon entropy of three
values attained from three various MTM power
spectra. Thus, the MTM power spectra at three
test settings: (a) a sine wave, (b) uniformly
distributed random variables, and (c) the
oscillating signal from the subject with diabetes
mellitus. These values are normalized. The sine
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wave achieves a zero value, the uniformly
random variable attains unity, and the diabetic

subjects”  experimental  signal  between.

hsEntropy is this corresponding ‘in between’
value.
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Figure 1. An MTM power spectrum for an arrangement of 1000 RR-intervals from a subject diagnosed with diabetes
mellitus. SMTM is the area underneath the power spectrum; yet above the baseline. MTM parameters used in the
computation of SMTM, high spectral Entropy and high spectral DFA are as follows (a) 1 Hz for sampling frequency; (b)
DPSS or Slepian Sequences are set to 3; (c) 256 for Fast Fourier Tranform length; and, lastly (d) Thomson's nonlinear
combination method is set to ‘adaptive’.

DFA was derived by Peng et al in 1995 [27].
It can be imposed on time-series where the
mean, variance and autocorrelation adjust with
time. High spectral Detrended Fluctuation
Analysis (hsDFA) is where DFA is applied to
the frequency rather than time. The horizontal
axis is frequency and, vertical axis is amplitude.
To acquire hsDFA we estimate the spectral
adaptation in precisely the same way as with
hsEntropy. DFA is the algorithm enforced onto
the power spectrum instead.

Spectral Multi-Taper Method (SMTM) [28]
is derived from elevated broadband noise
intensities generated in MTM power spectra by
irregular and often chaotic signals. SMTM is the
area beneath the power spectrum but above the
baseline.

Chaotic Forward Parameters
(CFP 1to CFP7)

CFP1 to CFP7 [4] are applied to RR-
intervals from normal subjects and those with
diabetes mellitus. hsDFA responds to chaos
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contrariwise to the others, so we subtract its
value from unity. Weightings of unity are
assumed for all three chaotic globals. Later we
evaluate the statistically significant CFP1 and
CFP3 alone. We applied the CFP1 with all three
chaotic globals included and then the CFP3 with
hsDFA absent. As before in Souza et al [22] and
Garner et al [4], CFP1 is expected to be the most
statistically robust and the CFP3 the most
statistically significant.

There are seven non-trivial combinations of
three chaotic globals [15]. It is anticipated that
the CFP which applies all three should be the
most robust. This is since it takes the
information and processes it in three different
ways. The summation of the three would be
expected to deviate greater than single or double
permutations. The potential analytical hazard
here is we are only computing spectral
components; the phase information is lost.
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Principal Component Analysis

Principal Component Analysis (PCA)
[29,30] estimates the complexity of high-
dimensional data sets. It is sympathetic when
sources of unpredictability in the data need
clarification or, to lessen the complexity of the
data and, via this evaluate the data with fewer
dimensions. Its key aim is to signify the data
with least variables at the same time as satisfying
the majority of total variance.

There are two main properties of the PCA:

— It is non-parametric — no prior
knowledge can be incorporated.
— Data reduction incurs loss  of
information.
Some assumptions of the technique are
imperative:

1. Linearity — Accepting the data set to be
linear combinations of the variables.

2. The necessity of mean and covariance.

3. No assurance that the direction of

maximum  variance  will  contain
discriminative features.
4. Large variance includes the most

important dynamics, whilst the lowest
corresponds to noise.

The following need consideration when

understanding PCA:

1. The higher the component loadings the
more critical that the variable is to the
component.

2. Positive and negative
understood as mixed.

3. Whether positive or negative for mixed
loadings; it is irrelevant.

4. The rotated component matrix is vital.

loadings are

Effect Sizes

Cohen’s d [31,32] is a general term that
signifies the effect sizes. To estimate the size of
deviations amongst protocols for significant
differences, the effect size was assessed via a

282

sub-group termed Cohen’s ds [33]. Cohen’s ds
characterize the standardized mean difference of
an effect. It can be conferred to compute effects
across studies even when the dependent
variables are quantified in unalike ways or when
completely dissimilar measures are affected. It
varies from zero to infinity and can be positive
or negative. Cohen denotes the standardized
mean difference between two groups of
independent observations for a suitable sample
as ds.

So for Cohen’s ds (equation below), the
numerator is the variation between the means of
two groups of observations. The denominator is
the pooled standard deviation. These are then
squared to avert the positive and negative values
cancelling each other out. They are summed, and
divided by the number of observations minus
one (Bessel’s correction) for bias in the estimate
of the population variance. To conclude, a
square root is performed.

X1 - X

(n, —1)SD; +(n, —1)SD?
n+n,-2

Cohen'sd, =

Regarding, Cohen’s ds the subsequent values
describe their relevance as per Sawilowsky [34];
0.01 > very small effect; 0.20 > small effect;
0.50 > medium effect; 0.80 > large effect;1.20 >
very large effect, and finally 2.00 > a huge effect
size.

Thomson’s nonlinear combination

methods & DPSS

Now we assess the effect of manipulating
Thomson’s nonlinear combination settings on
the MTM spectra. There are three possible
circumstances. The conditions that can be
imposed on the MTM power spectrums window
are 'adapt’, 'eigen’, or 'unity' and are the weights
on individual tapered power spectral density
(PSD) estimates. The default is Thomson’s
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adaptive frequency-dependent weights, hence
‘adapt’. The 'eigen’ method weights each tapered
PSD estimate by the eigenvalue (frequency
concentration) of the corresponding Slepian
taper. The 'unity’ method weights each tapered
PSD estimate equally [21].

Moreover, we concurrently assess the effect
of changing the settings of the DPSS from 2 to
13. DPSS affects the adaptation properties of the
tapers with the intention of reducing spectral
leakage. Whilst assessing the outcomes of the
Thomson’s nonlinear combinations settings and
the levels of DPSS on the chaotic response the
sampling frequency is fixed at 1Hz for the MTM
and Fast Fourier Transform of length 256 is
enforced. We assess the effects of DPSS (2 to
13) and Thomson’s nonlinear combinations
(‘adaptive’,’eigen’ and ‘unity’) at multiple
lengths of time-series of RR-intervals
simultaneously. We start the assessment at 500
RR-intervals and at intervals of 50 increase the
time-series to a maximum of 1000 RR-intervals.
We only assess CFP1 and CFP3. These are the
only groupings significant under default
conditions.

Cubic-spline Interpolation

Following this, we evaluated the importance
of pre-processing techniques on the results
obtained through chaotic global algorithms.
Once more comparing only the chaotic global
values for CFP1 and CFP3 as these are the only
values significant under default conditions.

Time series constructed from the RR-
interval tachograms are not equidistantly
sampled. This has to be made suitable prior to
frequency-domain analysis. Firstly, we can
decide to assume equidistant sampling [35] and
compute the power spectrum directly from the
tachogram of RR-intervals. This is the method
widely adopted up-til-now by previous studies
on chaotic globals with obese children [36],
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ADHD [15] and diabetes mellitus [22]. The RR-
intervals are therefore a function of the beat
number. Yet, this could cause a distortion in the
spectrum [37] and so the spectrum must then be
considered a function of cycles per beat rather
than of frequency [38].

An alternative approach is to implement a
cubic spline interpolation [39] to convert the
nonequidistantly sampled RR-tachogram into an
equidistantly sampled time series [40].
Consequently we arranged a cubic spline
interpolation on the RR-interval tachogram. We
accomplish this at the levels 1Hz to 13Hz. This
covers the most relevant scenarios in HRV
analysis. Kubios HRV® [23] software offers a
default option of 4Hz. It is important to realize
that the interpolation frequency will increase the
number of data points in the time-series. A
frequency of 4Hz for example will elevate the
number of RR-intervals from 1000 to 4000, etc.

Following the interpolation, the chaotic
global algorithms are fixed. During the
assessment of the cubic spline interpolations we
set the Thomson’s setting to ‘adaptive’, 1Hz for
sampling frequency, length of 256 for Fast
Fourier Transform and the DPSS set to 3.

Results

When observing Tablel it should be
emphasised that CFP1, CFP2, CFP3, CFP6 and
CFP7 present increased values in the normal
physiological healthy state and reduced values in
the diabetic group. Of the seven permutations
only CFP1 and CFP3 are statistically significant
with CFP1 (<0.03; Kruskal-Wallis, medium
effect size) and CFP3 (<0.01; ANOVAl &
Kruskal-Wallis, large effect size). The standard
deviations are comparable throughout.

With regards to the multivariate analysis by
PCA (See Figure2). For the MTM power
spectra CFP1 has the First Principal Component
(PC1) (0.257) and the Second Principal
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Component (PC2) (-0.518). Nevertheless, CFP3
has the PC1 (0.049) and the PC2 (-0.609). Only
the first two components need be considered
owing to the steep scree plot. The cumulative
influence as a percentage is 61.9 percent for the
PC1 and 99.8 percent for the cumulative total of

the PC1 and PC2. PC2 has an influence of 37.9
percent. CFP1 which applies all three chaotic
global techniques is the optimal and most robust
overall grouping with regards influencing the
correct outcome.

Table 1. Mean values and their standard deviations for the chaotic forward parameters (CFP1 to CFP7: non-dimensional
values) for the normal and diabetic mellitus subjects with 1000 RR intervals. Both the one-way analysis of variance
(ANOVAL:parametric) and the Kruskal-Wallis (non-parametric) tests of significance were calculated. This was since the
normal distributions were borderline in the majority of cases, determined via statistical tests of Anderson-Darling [41] and
Lilliefors [42]. Effect Sizes by Cohen’s ds were calculated for CFP1 and CFP3 as they were significant by ANOVA1
and/or Kruskal-Wallis tests under default conditions.

Chaotic Global | Mean + S.D. Mean + S.D. ANOVAL Kruskal-Wallis Cohen’s dg Effect
CFPx Normal (n=23) Diabetic (n=23) (p-value) (p-value) Sizes
CFP1 0.9217+0.1194 0.8603 = 0.1202 0.0893 0.0273 0.51
CFP2 0.6340 + 0.1362 0.5889 + 0.0995 0.2066 0.1471 -
CFP3 0.8467 £ 0.1072 0.7463 £ 0.1043 0.0024 0.0002 0.94
CFP4 0.7283 £ 0.2248 0.7394 + 0.1985 0.8597 0.8347 -
CFP5 0.3268 £ 0.1725 0.4071 £ 0.1480 0.0973 0.1040 -
CFP6 0.6440 £ 0.1735 0.6133 = 0.1504 0.5243 0.6445 -
CFP7 0.4765 * 0.2448 0.3641 = 0.1967 0.0931 0.1040 -
Component Loadings
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Figure 2. The plot illustrates the component loadings CFP1 to CFP7 for the 1000 RR-intervals of 23 subjects
with diabetes mellitus. The CFP values are deduced by using the MTM spectra throughout. The properties of the MTM
spectra are as follows: Sampling frequency 1Hz, DPSS of 3, 256 for Fast Fourier Transform length
and Thomson’s nonlinear combination set at ‘adaptive’. Clearly, CFPI and CFP3
are the most influencial components when assessed by PCA above.
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Thomson’s nonlinear combination

methods & DPSS

Here we present results for CFP1 and CFP3.
We chose CFP1 and CFP3 since they are the two
combinations presenting significant values under
default conditions with MTM power spectra
(CFP1 to CFP7) [22]. For CFP1 and CFP3
concerning the Thomson’s nonlinear
combination methods the difference the three
conditions have is minimal. This is also the same
regarding the manipulation of the DPSS. Most of
the differences are induced by signal length. See
sections next on CFP1 and CFP3.

Chaotic Forward Parameter One

CFP1 (Figure 3): Regarding the DPSS for
the ‘adapt’, ‘eigen’ and ‘unity’ settings the
decreases were mostly identical throughout.
DPSS only effects the p-values on the shortest
lengths of data (<600 RR-intervals); the
interquatile ranges are small at maximal data
length (1000 RR-intervals). Next, the Kruskal-
Wallis test of significance is more sensitive on
the p-values than the ANOVAL throughout. The
p-values on similar datasets are smaller and
therefore more significant. Finally, length of the
RR-intervals is the most critical factor to attain a
statistical marker for dynamical diseases at the
level p<0.05 (or <5%) for both the Kruskal-
Wallis test and ANOVAL, but only for 900 to
1000 RR-intervals.

Chaotic Forward Parameter Three

CFP3 (Figure 4): The p-values are more
significant for CFP3 compared to CFP1. With
CFP3 p<0.2 (ANOVA) and p<0.04 (Kruskal-
Wallis) throughout the analysis. DPSS has
greater influence on p-values at lower data
lengths than does CFP1. This is revealed by the
higher interquartile ranges at low data lengths of
the RR-intervals. Note, a length of 600 RR-
intervals is significant for CFP3 whereas 900

RR-intervals is required for CFP1. There is more
statistical variability with CFP3 than with CFP1.
Interquartile ranges are higher, boxplot whiskers
are wider and the p-values smaller.

Cubic Spline Interpolation

The effect of cubic spline interpolation
between 1Hz and 13Hz increasing the length of
the time-series via interpolation (rather than by
recording longer time-series in the laboratory) is
minimal. This is for both CFP1 and CFP3;
parametric and non-parametric  tests of
significance as illustrated in Table 2.

Discussions

It is not totally clear why different
algorithms behave in different manner for heart
rate autonomic control. Thus, our study aimed to
assess a new approach to detect autonomic
dysfunction in diabetic patients based on the
complexity of RR-intervals oscillation. As a
main outcome, chaotic global techniques applied
for HRV analysis were able to identify cardiac
autonomic dysfunction in a sample of diabetic
patients.

HRV has received consideration due to the
simple workability of the technique. The data
can be collected by a simple one-channel ECG
or by a pulse watch. RR-intervals can be
processed by user-friendly software [40].
Furthermore, in 1996 the Task Force published
directives in order to standardize HRV analysis
based on linear methods in the time and
frequency domains [40]. In this context, the
research literature has established decreased
HRV in diabetes [43,44].

Equally, and more recently, nonlinear
analysis of HRV was suggested to provide
information related to the scaling, quality and
correlation properties of the time series, while
traditional linear methods were designed to
assess the magnitude of HRV. Complexity of
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HRV is suggested to detect autonomic changes

ANOVA1 : DPSS 2to 13
‘adaptive' mode

that linear methods are unable to identify [24].
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Figure 3. The boxplots of CFP1 for the two tests of significance, one-way analysis of variance (ANOVAL: left column)
and the Kruskal-Wallis test (right column) by p-value for the normal against diabetes mellitus subjects. These are per
DPSS values from 2 to 13 in increments of one and for length of time-series from 500 to 1000 RR-intervals in intervals of
50. The three Thomson’s nonlinear combinations are applied: ‘adaptive’ (top row), ‘eigen’ (middle row) and ‘unity’
(bottom row). The value closest to zero is the minimum with the value furthest away the maximum. The boundary of the
box nearby the zero specifies the 25™ percentile. The line within the box is the median; not the mean. The boundary of the
box furthest from the zero is the 75" percentile. The difference flanked by these boundary points is the inter-quartile
range (IQR). Whiskers (or error bars) above and beneath the boxes designate the 90™ and 10" percentiles respectively.
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Figure 4. The boxplots of CFP3 for the two tests of significance, one-way analysis of variance (ANOVAL: left side) and
the Kruskal-Wallis test (right side) by p-value for the normal versus diabetes mellitus subjects. These are per DPSS values
from 2 to 13 in increments of one and for length of time-series from 500 to 1000 RR-intervals in intervals of 50. The
Thomson'’s nonlinear combinations are applied: ‘adaptive’ (upper level), ‘eigen’ (middle level) and ‘unity’ (lower level).
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Table 2. CFP1 and CFP3 (non-dimensional values) for the two tests of significance; the ANOVAL (parametric) and the
Kruskal-Wallis (non-parametric) test by p-value for the normal against diabetic subjects. DPSS is set to 3 and length of
time-series is set at 1000 RR-intervals for an interpolation rate of 1Hz increasing to 2000 for 2Hz and so on. To calculate
the MTM, the additional settings are as follows, sampling frequency of 1Hz, 256 for Fast Fourier Transform length and
Thomson's ‘adaptive’ nonlinear combination method.

Interpolation CFP1 CFP3
Rate (Hz) (p-value) (p-value)
ANOVAL KW ANOVA1 KW

1 0.0888 0.0273 0.0024 0.0002
2 0.0914 0.0273 0.0024 0.0002
3 0.0924 0.0273 0.0024 0.0002
4 0.0928 0.0273 0.0024 0.0002
5 0.0932 0.0273 0.0024 0.0002
6 0.0937 0.0273 0.0024 0.0002
7 0.0934 0.0288 0.0024 0.0002
8 0.0940 0.0273 0.0024 0.0002
9 0.0939 0.0288 0.0024 0.0002
10 0.0941 0.0305 0.0024 0.0002
11 0.0941 0.0288 0.0024 0.0002
12 0.0945 0.0273 0.0024 0.0002
13 0.0948 0.0305 0.0024 0.0002

Reduced complexity of HRV is associated
with impaired autonomic function [45,46]. It
allowed us to hypothesize decreased values of
globally chaotic parameters in diabetic patients,
which was later confirmed by lower values of
CFP1 and CFP3 in the diabetic group compared
to the control group.

Regarding the mathematical particulars of
the globally chaotic methods, in this study we
intended to maximize the significance of the
discrimination between the two cohorts by
adjusting the parameters of MTM power
spectrum applied in the calculation of chaotic
globals. CFP1 and CFP3 were the only
significant combinations of chaotic globals when
assessed by the MTM power spectrum and the
combinations of hsEntropy, hsDFA and SMTM
under default conditions. Therefore, when we
adjusted the MTM parameters we examined the
effects of adjustment on these two combinations
The
combination methods

Thomson’s  nonlinear
(‘adapt’,
‘unity’) have similar effect throughout and
indicate no difference in the significances when
applied sequentially. DPSS was varied between

2 to 13. Yet, these adjustments had little

alone. three

‘eigen” and

significance on the outcome of the statistical
tests (ANOVAL or Kruskal-Wallis), except for
minimal influence when the data lengths were
extremely short (RR-intervals < 600). The
majority of the differences were produced by
signal length.

Furthermore, once we had adjusted the
MTM power spectrum parameters we assessed
the impact of a cubic spline interpolation on the
time series. Interpolation of the RR-intervals
time-series prior to enforcement of the MTM
power spectra was irrelevant. It had little effect
on the statistical significance between the two
groups.

Globally chaotic methods applied to RR-
intervals were previously evaluated in ADHD
[15], COPD [14], Obesity [36,47], Malnutrition
[48] and flexible pole manuevers for
physiotherapy shoulder rehabilitation [49]. This
study highlights significant findings for clinical
practice and procedures. ICUs and physicians
are interested in predicting the risk for
physiological complications. Comprehension of
biological signals through nonlinear HRV is a
significant issue for an appropriate program of
care. We revealed that globally chaotic methods
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applied to RR-intervals is sensitive to distinguish
autonomic impairment in diabetes. Yet, they are
robust to MTM spectral parameters and cubic
spline interpolations.

Conclusions

Chaotic global techniques applied to RR-
intervals robustly detected HRV changes in
diabetic patients revealing decreased nonlinear
mechanisms in this population.  Spectral
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