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Abstract
Hydrogen sulfide (H2S) is a signaling molecule that is actively synthesized in the tissues and regulates a wide range of physio-
logical processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influ-
encing cellular signaling pathways and sulfhydration of target proteins. The influence of H2S signaling in cell cycle and cell death 
pathways is associated with tumor growth, angiogenesis, and neurodegenerative diseases. The relationship between H2S and oral 
cavity pathologies, especially periodontal diseases, is controversial, but should not be underestimated. Further research is needed 
in order to clarify the exact mechanisms and conditions, which cause the H2S molecule to exhibit cytoprotective/antioxidant or 
cytotoxic proprieties in the oral cavity.
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Hydrogen sulfide (H2S) is well-known 
as a toxic gas with an obnoxious odor, which is 
mainly formed in the process of putrefaction of 
animal and plant proteins [1]. As a novel endoge-
nous gas transmitter, which mediates a variety of 
biological processes through multiple signaling 
pathways [2], H2S was discovered in 1996, when 
its formation in brain tissue by enzyme cystathi-
onine-β-synthase (CBS, EC 4.2.1.22) was described 
and its possible role as a neuromodulator was 
suggested (promoting the induction of long-term 
potentiation in the hippocampus of rats due to 
increased activity of N-methyl D-aspartate recep-
tors) [3]. Today it is known that H2S regulates a 
wide range of physiological processes, namely 

cardiovascular, neuronal, immune, respiratory, 
gastrointestinal, liver, and endocrine systems, by 
influencing cellular signaling pathways and sulf-
hydration of target proteins. The influence of H2S 
signaling in cell cycle and cell death pathways is 
associated with tumor growth, angiogenesis, and 
neurodegenerative diseases [4].

Endogenous H2S in humans and animals 
is synthesized from sulfur-containing amino 
acids, primarily from L-cysteine and its disulfide 
form – cystine. Since cysteine can be synthesized 
in the body from methionine, the synthesis of H2S 
can also start with methionine [5]. Enzymes CBS, 
cystathionine-γ-lyase (CSE, EC 4.4.1.1), 3-mercap-
topyruvate sulfurtransferase (3-MST, EC 2.8.1.2) 
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the extracellular space causes the reduction of 
cystine to cysteine, which increases the amount 
of cysteine available as a substrate for glutathi-
one synthesis, and enhances the activity of cys-
tine/glutamate antiporter, thereby increasing the 
transport of cysteine into cells [10, 14, 15]. 

In addition, the cytoprotective effect of 
hydrogen sulfide is associated with the modula-
tion of the function of intracellular caspases or 
kinases, activation of nuclear factor  – NF-kβ and 
κВ-dependent proteins (inducible NO synthase 
(iNOS), cyclooxygenase-2 (COX-2), intercellu-
lar adhesive molecule-1), and with a decrease in 
anti-apoptotic factor Bcl-2 [16–19]. 

M. Greabu and co-authors (2016) noted 
that H2S, on one hand, at low concentrations has 
antioxidant and cytoprotective effects, while on 
the other hand – at higher concentrations is cyto-
toxic [20], causing the activation of free radical 
processes, calcium mobilization, depletion of the 
glutathione system, the intracellular release of 
iron, as well as induction of mitochondrial cell 
death [16]. Therefore, the rate of utilization of 
hydrogen sulfide is important. Three different 
mechanisms are involved in H2S catabolism: oxi-
dation, methylation, and metalloprotein uptake. 
The vast majority of hydrogen sulfide is excreted 
by the kidneys in the form of sulfate [21, 22].

The role of endogenous H2S produced in 
the oral cavity is poorly understood. There are 
data that H2S is generated by the products of sul-
fate-reducing bacteria (SRB) metabolism, decom-
posing substrates such as cysteine, arginine or 
tryptophan [23]. SRB firstly isolated from the 
oral cavity are gram-negative mesophilic bacteria 
belonging to the class Deltaproteobacteria of the 
phylum Proteobacteria, including 2 orders, such 
as Desulfovibrionales and Desulfobacterales, of 
particular interest [24]. In addition, human peri-
odontal stem cells have been shown to express 
H2S-synthesizing enzymes – СSE and CBS. Here-
with CBS is probably the main source of endoge-
nous H2S in the periodontium [25]. 

Chun-Mei and co-authors (2017) collected 
gingival tissues from patients undergoing peri-
odontal operation including gingivitis, moderate 
chronic periodontitis, severe chronic periodon-
titis, and normal controls. RT-PCR and western 
blotting were performed to measure mRNA and 

and cysteine aminotransferase (САТ) are involved 
in the synthesis of hydrogen sulfide [6]. In the pro-
cess of the enzymatic pathways, CSE and СBS are 
cytosolic  pyridoxal-dependent enzymes, which 
lead to the formation of hydrogen sulfide using 
L-cysteine and homocysteine (Hcy) as the main 
substrates, while 3-MST uses 3-mercaptopyru-
vate (3-МР) as the substrate. 3-МР is generated by 
САТ from L-cysteine and α-ketoglutarate in the 
presence of cofactors – thioredoxin and dihydro-
lipoic acid [7–9]. Most of the 3-MST is localized in 
mitochondria because the concentration of L-cys-
teine in mitochondria is 3 times higher than in 
the cytoplasm [7, 10]. 

D-cysteine can also be a substrate for H2S 
synthesis. The synthesis takes place with the 
help of an enzyme D-amino acid oxidase (DААО, 
EC 1.4.3.3) with 3-MST, mainly in the kidneys 
and cerebellum and is 80 times more productive 
than the synthesis of H2S from L-cysteine [10, 11]. 
H2S can also be synthesized by thiosulfate-anion 
reduction using thiosulfate-dithiol sulfur trans-
ferase (ТSТ, EC 2.8.1.5) [12]. 

H2S plays the role of a signaling molecule, 
the gas transmitter in the human organisms, 
however, no specific receptors have been found 
for it. Different ion channels, receptors, enzymes, 
and proteins, regulating numerous biochemical 
and physiological processes, serve as H2S molec-
ular targets. A key mechanism of H2S-signaling 
is S-sulfhydration of proteins, post-translation 
modification with conversion of -SH groups into 
-SSH, which significantly increases the reactivity 
of cysteine residues and increases the functional 
activity of molecular targets as well [1].

The cytoprotective properties of H2S 
probably relate to its ability to neutralize vari-
ous active forms of molecules. Hydrogen sulfide 
is known as a free radical scavenger that can 
directly react and “quench” superoxide anion, 
peroxynitrite and other reactive oxygen species. 
The significance of the reaction of H2S with oxy-
gen is not unambiguous, because the reaction 
product – sulfite can have both toxic and antiox-
idant properties, which apparently depends on 
its concentration [13]. Moreover, hydrogen sulfide 
has the property of protecting cells from oxida-
tive stress due to its ability to increase the level of 
intracellular glutathione. The release of H2S into 
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Greabu and co-authors (2016) also sug-
gest Fusobacterium spp., Parvimonasmicra, 
Tannerella forsythia or Filifactoralocis being as 
H2S-producing bacterial strains [20]. In particu-
lar, Fusobacterium spp. acts on substrates such 
as cysteine [34], Hcy [35], or reduced glutathione 
[36]. 

Chu and co-authors (2002) studied the 
metabolism of reduced glutathione in Trepo-
nema denticola [37]. Researchers have proposed 
three stages of bacterial H2S production: a) glu-
tamate or glutamine and the dipeptide cysteinyl 
glycine (Cys-Gly) are formed as a result of trans-
formations of reduced glutathione; b) glycine and 
L-cysteine are formed as a result of Cys-Gly break-
down; c) pyruvate, ammonia and H2S are the final 
products of L-cysteine degradation. 

In vitro studies have shown that treat-
ment of cultures of Fusobacterium nucleatum 
and Porphyromonas endodontalis with the stress 
hormones adrenaline, noradrenaline and cortisol 
inhibited their growth, but increased their H2S 
production. At the same time, stress hormones 
did not affect the growth of Prevotela intermedia 
and Porphyromonas gingivalis, but increased the 
generation of H2S by Prevotela intermedia [38]. 

Chi and co-authors (2014) also found that 
the periodontal pathogen Porphyromonas gin-
givalis produces H2S [39]. Herewith, the level of 
H2S in the oral cavity was positively correlated 
with the index of bleeding gums, the depth of 
periodontal pockets, and radiographic data on 
bone loss. To elucidate the mechanism of this 
correlation, gum fibroblasts and periodontal lig-
ament cells (alveolar periosteum) were treated 
with different concentrations of H2S donor – 
sodium hydrosulfide (NaHS) in the presence or 
absence of Porphyromonas gingivalis. H2S not 
only increased dose- and time-dependent expres-
sion of mRNA and proteins of pro-inflammatory 
cytokines IL-6 and IL-8 in gum fibroblasts and 
periodontal ligament cells, but also increased the 
expression of these cytokines, which was caused 
by the lipopolysaccharide of Porphyromonas 
gingivalis. 

Interestingly, for the experimental treat-
ment of periodontitis in rats, another group of 
researchers administered NaHS in three different 
doses (14, 28, and 70 μmol/kg), but did not get a 

protein levels of CBS and CSE, responsible for H2S 
production.  The mRNA and protein of CBS and 
CSE were both expressed in human gingiva and 
raised significantly during moderate and severe 
periodontitis compared to healthy control. CBS, 
but not CSE, significantly increased in gingivitis. 
However, there was no significant difference of 
H2S level and synthesis among these groups [26].

Liao and Hua (2013) found that H2S 
increases the expression of osteoprotegerin and 
receptor activator of NF-κB ligand (RANKL) by 
human periodontal ligament cells, stimulated by 
the force of tension. Probably, this indicates the 
involvement of H2S in the process of periodontal 
remodeling, especially in the case of teeth dis-
placement [28, 29]. 

Kushkevych and co-authors (2020) noted 
the toxic effects of H2S on the epithelial cells of 
the oral cavity. H2S can act as an inhibitor of cel-
lular cytochrome oxidase, and can also have a 
secondary effect, destroying disulfide bonds of 
proteins, affecting granulocytes and their func-
tion in the immune system [24]. 

H2S and other volatile sulfur compounds 
(VSCs) have been shown to cause halitosis, which 
means bad breath (synonyms:   foeter oris or foe-
ter ex oris) [26], and the protective system of 
lactoperoxidase of the oral cavity inhibits the 
growth of microorganisms and the formation of 
VSCs [29]. Also, VSCs, such as Н2S, mercaptan. 
and thioether, stimulate the formation of pro-in-
flammatory cytokines and promote the devel-
opment of inflammation in endodontic dental 
treatment [30]. 

Some studies suggest that H2S is directly 
related to the initiation and progression of peri-
odontal disease by inhibiting the proliferation 
of oral keratinocytes [31], decreasing protein 
synthesis in oral fibroblasts and inhibiting colla-
gen synthesis [32]. Moreover, H2S production is 
associated with many bacterial species that are 
involved in periodontitis pathogenesis, such as 
Porphyromonas gingivalis, Treponema denti-
cola, and Fusobacterium spp. Since the higher 
levels of H2S have been detected at diseased sites, 
H2S has been suggested to serve as a marker for 
the proteolytic activity of the biofilm and also to 
be involved in the pathogenesis of the periodon-
tal disease [33].
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associated with tumor growth, angiogenesis and 
neurodegenerative diseases. The relationship 
between H2S and oral cavity pathologies, espe-
cially periodontal diseases, is controversial, but 
should not be underestimated. Further research 
is needed in order to clarify the exact mecha-
nisms and conditions, which cause the H2S mol-
ecule to exhibit cytoprotective/antioxidant or 
cytotoxic proprieties in the oral cavity.
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